Final Examination Stability Analysis in Geotechnical Engineering

(by Dr J. Takemura)

14th February 2005

- 1. The photo below shows damages observed along a sidewalk after Niigataken-Chuetsu Earthquake.
 - 1) Find typical damages or phenomena of structures caused by soil liquefaction induced by earthquake motion as many as possible,
 - 2) Explain the mechanism of the damages, that is, how the soil liquefaction causes the phenomena, and then
 - 3) Discuss the effective countermeasures for prevention of these damages

2. In the general bearing capacity equation for shallow foundations, shape factors (F_{cs} , F_{qs} , $F_{\gamma s}$) are included to take the effect of foundation shape into account.

L

General bearing capacity Eq.: $q_{ult} = cN_cF_{cs}F_{cd}F_{ci} + q_sN_qF_{qs}F_{qd}F_{qi} + \frac{\gamma B}{2}N_{\gamma}F_{\gamma s}F_{\gamma d}F_{\gamma i}$

Meyerhof and Hansen proposed the following shape factors for N_{γ} value, $F_{\gamma s}$, respectively.

$$F_{\gamma s} = 1 + 0.1 \tan^2 \left(\frac{1}{4}\pi + \frac{1}{2}\phi\right) \frac{B}{L}$$
 Meyerhof
$$F_{\gamma s} = 1 - 0.4 \frac{B}{L}$$
 Hansen

The effects of shape considered in the two equations are inconsistent.

Explain the reason of this inconsistency and the conditions for which these equations can be used.